1
$$\mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

Work out $\mathbf{a} - 3\mathbf{b}$

Circle your answer.

[1 mark]

$$\begin{pmatrix} -6 \\ 17 \end{pmatrix}$$

$$\begin{pmatrix} -6 \\ -13 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 17 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ -13 \end{pmatrix}$$

2 Five points are connected by vectors.

Not drawn accurately

 $\overrightarrow{FG} = 2\overrightarrow{EH}$

Work out \overrightarrow{FE} in terms of **a** and **b**.

voint out 7 2 in tornio or a and b.	
	[4 marks]

Answer _____

$$3 \qquad \qquad \text{Work out} \qquad \begin{pmatrix} -4 \\ 8 \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

Circle your answer.

[1 mark]

$$\begin{pmatrix} -7 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix} -7 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} -1 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$$

The diagram shows the vectors **a** and **b**.

As a column vector $\mathbf{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

4 (a) What is b as a column vector?

[2 marks]

4 (b) Work out 4a as a column vector.

[1 mark]

4 (c)
$$\mathbf{a} + \mathbf{c} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

Work out **c** as a column vector.

Circle your answer.

[1 mark]

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$\binom{0}{2}$$

$$\begin{pmatrix} -2\\0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ -2 \end{pmatrix}$$